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Briefing: Risk Measures

Let the random variable Y model the gains and losses of a financial
position.
A risk measure ρ maps Y to the real value ρ(Y) P R which stands for the
money one has to add to Y in order to make it acceptable. That is

ρ(Y + ρ(Y)) = 0.

Properties
Let Y,X be random variables.

Cash-invariance For any m P R ρ(X + m) = ρ(X) ´ m. ⇝ ρ(0) = 0.
Homogeneity For any c ą 0 ρ(cX) = cρ(X).
Monotonicity If X ď Y a.s. then ρ(X) ě ρ(Y).
(Sub-additivity) ρ(X + Y) ď ρ(X) + ρ(Y).
(Law-invariance) If X d

= Y then ρ(X) = ρ(Y).
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Briefing: Risk Measures (Examples)

Value-at-Risk
Let Y „ F and α P (0, 1) (close to 0). Then

VaRα(Y) = ´q´
α (F) = ´ inftx P R | F(x) ě αu.

Expected Shortfall
Let Y „ F and α P (0, 1) (close to 0). Then (if F(q´

α (F)) = α)

ESα(Y) =
1

α

ż α

0
VaRβ(Y)dβ

(
= ´EF[Y | Y ď q´

α (F)]
)
.
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Measures of Systemic Risk
Suppose you have some financial system consisting of n firms. The
system can be represented as a random vector Y = (Y1, . . . ,Yn).
How to measure the risk of the entire system Y?

Apply some scalar risk measure to each component:

ρ(Y) = (ρ(Y1), . . . , ρ(Yn))

Caveat: Ignores the dependence structure! (Usually high correlation
in the tails!)
Use some kind of generalisation of quantiles to replace VaR (this will
be set-valued).
Aggregate the system with some monotone aggregation function
Λ: Rn Ñ R. Measure the risk via

ρ(Λ(Y)).

⇝ Bail-out costs. This is insensitive with respect to capital
allocations and thus ignores transaction costs.

T. Fissler (Imperial College London) Measures of Systemic Risk 13 April 2018 4 / 29



Measures of Systemic Risk
Suppose you have some financial system consisting of n firms. The
system can be represented as a random vector Y = (Y1, . . . ,Yn).
How to measure the risk of the entire system Y?
Apply some scalar risk measure to each component:

ρ(Y) = (ρ(Y1), . . . , ρ(Yn))

Caveat: Ignores the dependence structure! (Usually high correlation
in the tails!)

Use some kind of generalisation of quantiles to replace VaR (this will
be set-valued).
Aggregate the system with some monotone aggregation function
Λ: Rn Ñ R. Measure the risk via

ρ(Λ(Y)).

⇝ Bail-out costs. This is insensitive with respect to capital
allocations and thus ignores transaction costs.

T. Fissler (Imperial College London) Measures of Systemic Risk 13 April 2018 4 / 29



Measures of Systemic Risk
Suppose you have some financial system consisting of n firms. The
system can be represented as a random vector Y = (Y1, . . . ,Yn).
How to measure the risk of the entire system Y?
Apply some scalar risk measure to each component:

ρ(Y) = (ρ(Y1), . . . , ρ(Yn))

Caveat: Ignores the dependence structure! (Usually high correlation
in the tails!)
Use some kind of generalisation of quantiles to replace VaR (this will
be set-valued).

Aggregate the system with some monotone aggregation function
Λ: Rn Ñ R. Measure the risk via

ρ(Λ(Y)).

⇝ Bail-out costs. This is insensitive with respect to capital
allocations and thus ignores transaction costs.

T. Fissler (Imperial College London) Measures of Systemic Risk 13 April 2018 4 / 29



Measures of Systemic Risk
Suppose you have some financial system consisting of n firms. The
system can be represented as a random vector Y = (Y1, . . . ,Yn).
How to measure the risk of the entire system Y?
Apply some scalar risk measure to each component:

ρ(Y) = (ρ(Y1), . . . , ρ(Yn))

Caveat: Ignores the dependence structure! (Usually high correlation
in the tails!)
Use some kind of generalisation of quantiles to replace VaR (this will
be set-valued).
Aggregate the system with some monotone aggregation function
Λ: Rn Ñ R. Measure the risk via

ρ(Λ(Y)).

⇝ Bail-out costs. This is insensitive with respect to capital
allocations and thus ignores transaction costs.

T. Fissler (Imperial College London) Measures of Systemic Risk 13 April 2018 4 / 29



Measures of Systemic Risk

Feinstein, Rudloff, Weber (2017)
Take an ex ante point of view: How do we need to allocate additional
money k P Rn in order to make the aggregate system Λ(Y + k) acceptable
under ρ?

R(Y) = tk P Rn | ρ(Λ(Y + k)) ď 0u.

Example 1
Examples for the aggregation Λ: Rn Ñ R

Λ(x) =
n
ÿ

i=1

xi, Λ(x) =
n
ÿ

i=1

´x´
i ,

Λ(x) =
n
ÿ

i=1

[αi(xi ´ vi)
+ ´ βi(xi ´ vi)

´], Λ(x) =
n
ÿ

i=1

[1 ´ exp(2x´
i )].
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Measures of Systemic Risk

Properties I of R(Y) = tk P Rn | ρ(Λ(Y + k)) ď 0u

The values of R are subsets of Rn.

Due to the monotonicity of Λ, they are upper sets. So

R(Y) = R(Y) + Rn
+.

If Λ is continuous, then R(Y) is closed.
If Λ is concave and ρ convex, then the set R(Y) is convex.
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Measures of Systemic Risk – illlustration

Figure: Illustration of a systemic risk measure R(Y) = tk P Rn | ρ(Λ(Y + k)) ď 0u.
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Measures of Systemic Risk – Properties II

Properties II
Let Y, X be random vectors.
Cash-invariance For any m P Rn: R(Y + m) = R(Y) ´ m.
Homogeneity If Λ is homogeneous, then R is homogeneous:

R(cY) = c R(Y), @c ą 0.

Monotonicity If X ď Y a.s. then R(X) Ď R(Y).
(Law-invariance) If ρ is law-invariant, then R is law-invariant. That is, if

X d
= Y then R(X) = R(Y).
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Statistical Properties
Possible tasks:

(i) M-estimation of R(Y), using realisations Y1, . . . ,YN.
(ii) Fit a parametric model for R(Y) with regression.
(iii) Compare and rank competing forecasts for R.
(iv) Validate forecasts / estimates for R.
(v) Z-estimation or GMM.

For (i) – (iii) we need loss functions of the form

L : 2Rn
ˆ Rn Ñ R.

They should incentivise truthful and honest forecasts.
In regression, we’d like to have a consistent estimator for the true
parameter.
⇝ This calls for the notion of elicitability!

(iv) and (v) need identifiability.

T. Fissler (Imperial College London) Measures of Systemic Risk 13 April 2018 9 / 29



Statistical Properties
Possible tasks:

(i) M-estimation of R(Y), using realisations Y1, . . . ,YN.
(ii) Fit a parametric model for R(Y) with regression.
(iii) Compare and rank competing forecasts for R.
(iv) Validate forecasts / estimates for R.
(v) Z-estimation or GMM.

For (i) – (iii) we need loss functions of the form

L : 2Rn
ˆ Rn Ñ R.

They should incentivise truthful and honest forecasts.
In regression, we’d like to have a consistent estimator for the true
parameter.

⇝ This calls for the notion of elicitability!
(iv) and (v) need identifiability.

T. Fissler (Imperial College London) Measures of Systemic Risk 13 April 2018 9 / 29



Statistical Properties
Possible tasks:

(i) M-estimation of R(Y), using realisations Y1, . . . ,YN.
(ii) Fit a parametric model for R(Y) with regression.
(iii) Compare and rank competing forecasts for R.
(iv) Validate forecasts / estimates for R.
(v) Z-estimation or GMM.

For (i) – (iii) we need loss functions of the form

L : 2Rn
ˆ Rn Ñ R.

They should incentivise truthful and honest forecasts.
In regression, we’d like to have a consistent estimator for the true
parameter.
⇝ This calls for the notion of elicitability!

(iv) and (v) need identifiability.

T. Fissler (Imperial College London) Measures of Systemic Risk 13 April 2018 9 / 29



Strictly consistent loss functions
Suppose we have some observations Y1, . . . ,YN of a random quantity
with values in some observation domain O.

We want to compare competing forecasts

x(1)1 , . . . , x(1)N P A, x(2)1 , . . . , x(2)N P A,

for some functional T (mean, quantile, risk measure, probability) of
the (conditional) distributions of Y1, . . . ,YN, taking values in some
action domain A.
Using a loss function L : A ˆ O Ñ R we compare and rank the
competing forecasts in terms of their realized losses:

L(1)
N =

1

N

N
ÿ

t=1

L
(
x(1)t ,Yt

) ?
ž L(2)

N =
1

N

N
ÿ

t=1

L
(
x(2)t ,Yt

)
Ranking depends on the choice of the loss function!
The loss function should incentivise truthful and honest forecasts!

T. Fissler (Imperial College London) Measures of Systemic Risk 13 April 2018 10 / 29



Strictly consistent loss functions
Suppose we have some observations Y1, . . . ,YN of a random quantity
with values in some observation domain O.
We want to compare competing forecasts

x(1)1 , . . . , x(1)N P A, x(2)1 , . . . , x(2)N P A,

for some functional T (mean, quantile, risk measure, probability) of
the (conditional) distributions of Y1, . . . ,YN, taking values in some
action domain A.

Using a loss function L : A ˆ O Ñ R we compare and rank the
competing forecasts in terms of their realized losses:

L(1)
N =

1

N

N
ÿ

t=1

L
(
x(1)t ,Yt

) ?
ž L(2)

N =
1

N

N
ÿ

t=1

L
(
x(2)t ,Yt

)
Ranking depends on the choice of the loss function!
The loss function should incentivise truthful and honest forecasts!

T. Fissler (Imperial College London) Measures of Systemic Risk 13 April 2018 10 / 29



Strictly consistent loss functions
Suppose we have some observations Y1, . . . ,YN of a random quantity
with values in some observation domain O.
We want to compare competing forecasts

x(1)1 , . . . , x(1)N P A, x(2)1 , . . . , x(2)N P A,

for some functional T (mean, quantile, risk measure, probability) of
the (conditional) distributions of Y1, . . . ,YN, taking values in some
action domain A.
Using a loss function L : A ˆ O Ñ R we compare and rank the
competing forecasts in terms of their realized losses:

L(1)
N =

1

N

N
ÿ

t=1

L
(
x(1)t ,Yt

) ?
ž L(2)

N =
1

N

N
ÿ

t=1

L
(
x(2)t ,Yt

)

Ranking depends on the choice of the loss function!
The loss function should incentivise truthful and honest forecasts!

T. Fissler (Imperial College London) Measures of Systemic Risk 13 April 2018 10 / 29



Strictly consistent loss functions
Suppose we have some observations Y1, . . . ,YN of a random quantity
with values in some observation domain O.
We want to compare competing forecasts

x(1)1 , . . . , x(1)N P A, x(2)1 , . . . , x(2)N P A,

for some functional T (mean, quantile, risk measure, probability) of
the (conditional) distributions of Y1, . . . ,YN, taking values in some
action domain A.
Using a loss function L : A ˆ O Ñ R we compare and rank the
competing forecasts in terms of their realized losses:

L(1)
N =

1

N

N
ÿ

t=1

L
(
x(1)t ,Yt

) ?
ž L(2)

N =
1

N

N
ÿ

t=1

L
(
x(2)t ,Yt

)
Ranking depends on the choice of the loss function!

The loss function should incentivise truthful and honest forecasts!

T. Fissler (Imperial College London) Measures of Systemic Risk 13 April 2018 10 / 29



Strictly consistent loss functions
Suppose we have some observations Y1, . . . ,YN of a random quantity
with values in some observation domain O.
We want to compare competing forecasts

x(1)1 , . . . , x(1)N P A, x(2)1 , . . . , x(2)N P A,

for some functional T (mean, quantile, risk measure, probability) of
the (conditional) distributions of Y1, . . . ,YN, taking values in some
action domain A.
Using a loss function L : A ˆ O Ñ R we compare and rank the
competing forecasts in terms of their realized losses:

L(1)
N =

1

N

N
ÿ

t=1

L
(
x(1)t ,Yt

) ?
ž L(2)

N =
1

N

N
ÿ

t=1

L
(
x(2)t ,Yt

)
Ranking depends on the choice of the loss function!
The loss function should incentivise truthful and honest forecasts!

T. Fissler (Imperial College London) Measures of Systemic Risk 13 April 2018 10 / 29



Strictly consistent loss functions
Definition 2 (Consistency)
A loss function L : A ˆ O Ñ R is strictly F-consistent for some functional
T : F Ñ A if

EF[L(T(F),Y)] ă EF[L(x,Y)]

for any F P F and any x P A, x ‰ T(F).

Definition 3 (Elicitability)
A functional T : F Ñ A is elicitable if there is a strictly F-consistent loss
function L : A ˆ O Ñ R for T. Then

T(F) = arg min
xPA

EF[L(x,Y)].

Applications:
M-estimation
Regression
(Meaningful) forecast comparison; forecast ranking; model selection.
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Regression
Classic situation: There is some parametric model m : Θ ˆ R Ñ R and we
assume that there is some true parameter θ˚ P Θ such that

Y = mθ˚(X) + ε, where E[ε|X] = 0. (1)

Equivalent form of (1):
E[Y|X] = mθ˚(X).

Find an estimator θ̂n for θ˚ by

θ̂n = arg min
θPΘ

1

n

n
ÿ

i=1

(mθ(Xi) ´ Yi)
2.

Relying in the fact that

θ˚ P arg min
θPΘ

E(mθ(X) ´ Y)2
␣

θ˚ P arg min
θPΘ

E
[
(mθ(X) ´ Y)2|X

](
However, instead of squared loss, we could use any strictly consistent loss
function for the mean functional.
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Regression II

General situation: There is some parametric model m : Θ ˆ Rℓ Ñ Rk and
we assume that there is some true parameter θ˚ P Θ such that
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Examples

T L(x, y)
mean (x ´ y)2

median |x ´ y|

α-quantile (1ty ď xu ´ α)(x ´ y)
τ -expectile |1ty ď xu ´ τ |(x ´ y)2

variance ˆ

Expected Shortfall ˆ

(mean, variance) ✓
(quantile, Expected Shortfall) ✓
identity (probabilistic forecast) L(F, y) = ´ log(f (y))

L(F, y) =
ş (

F(x) ´ 1ty ď xu
)2dx
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Two modes of elicitability
Many functionals such as moments, variance, or continuous densities
are unique, taking a single point in the action domain A.

Other functionals, such as quantiles, are naturally set-valued
qα(F) = tx P R | lim

tÒx
F(t) ď α ď F(x)u Ă R.

Choice of the action domain A:

A = R: The forecasts are points in R. There are multiple best
actions, namely every x P qα(F).
⇝ The functional T is set-valued, that is

T : F Ñ 2A.

A Ď 2R: The forecasts are subsets of R. These are points in the
power set A Ď 2R. There is a unique best action namely
x = qα(F).
⇝ The functional T is point-valued in some space
A Ď 2R, that is,

T : F Ñ A.
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Two modes of elicitability
To unify the framework, we can consider all functionals as set-valued,
possibly identifying them with singletons. E.g., we consider the mean
functional as

F ÞÑ T(F) =
␣ ş

x dF(x)
(

P 2R.

Definition 4
(a) A functional T : F Ñ 2A is selectively elicitable if there is a loss

function L : A ˆ O Ñ R such that

EF[L(t,Y)] ă EF[L(x,Y)]

for all F P F and for all t P T(F) and for all x P AzT(F).

(b) A functional T : F Ñ A is exhaustively elicitable if there is a loss
function L : A ˆ O Ñ R such that

EF[L(T(F),Y)] ă EF[L(x,Y)]

for all F P F and for all x P A, x ‰ T(F).
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Two modes of elicitability

Remarks:
For single-valued functionals such as the mean, the notions of
selective and exhaustive elicitability are equivalent.

Forecasting / regression in the exhaustive sense is more ambitious
than in the selective sense!
Quantiles are selectively elicitable. Strictly consistent selective loss
functions are given by S : R ˆ R Ñ R

L(x, y) = (1ty ď xu ´ α)(g(x) ´ g(y)),

where g is strictly increasing.
What about their exhaustive elicitability?
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Mutual Exclusivity

Theorem 5 (F, Hlavinová, Rudloff (2018))
Under weak regularity conditions, a set-valued functional is

either selectively elicitable
or exhaustively elicitable
or not elicitable at all.

Novel structural insight of its own!

Implications:

Quantiles are generally not exhaustively elicitable!
What about systemic risk measures?
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Identifiability

An identification function (moment function in Econometrics) is a
function V : A ˆ O Ñ R.
V selectively identifies T : F Ñ 2A if

EF[V(x,Y)] = 0 ðñ x P T(F)

for all F P F and for all x P A.
V exhaustively identifies T : F Ñ A if

EF[V(x,Y)] = 0 ðñ x = T(F)

for all F P F and for all x P A.
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Identifiability results
Consider the boundary of R

R0(Y) = tk P Rn | ρ(Λ(Y + k)) = 0u.
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Proposition 6 (F, Hlavinová, Rudloff (2018+))
Let Vρ : R ˆ R Ñ R be an oriented identification function for ρ. That is

EF[Vρ(x,Z)]

$

’

&

’

%

ă 0, x ă ρ(Z)
= 0, x = ρ(Z)
ą 0, x ą ρ(Z).

Then R0 = tk P Rn | ρ(Λ(Y + k)) = 0u is selectively identifiable with the
identification function

VR0 : R
n ˆ Rn Ñ R, VR0(k, y) = Vρ(0,Λ(y + k)).

VR0 is oriented in the sense that

EF[VR0(k,Y)]

$

’

&

’

%

ă 0, k R R(Y)
= 0, k P R0(Y)
ą 0, k P R(Y)zR0(Y).
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Illustration

EF[VR0(k,Y)]

$

’

&

’

%

ă 0, k R R(Y)
= 0, k P R0(Y)
ą 0, k P R(Y)zR0(Y).
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Strong elicitability of R

Theorem 7 (F, Hlavinová, Rudloff (2018+))
Let VR0 : Rn ˆ Rn Ñ R be an oriented selective identification function
for R0.
Let π be a measure on B̂(Rn) that assigns positive mass to any open,
non-empty set.

Under some integrability conditions, the loss function

LR : A ˆ Rn Ñ R, LR(K, y) = ´

ż

K
VR0(k, y)π(dk)

is a strictly consistent exhaustive loss function for R, where

A Ă
␣

K P 2R
n

| K = K + Rn
+

(

is the collection of closed upper subsets of Rn.
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Figure: Illustration of a systemic risk measure R(Y) = tk P Rn | ρ(Λ(Y + k)) ď 0u

and some misspecified forecast K.
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Order-Sensitivity
Can we compare two misspecified forecasts?

Proposition 8
The loss functions are order-sensitive with respect to Ď. That is, for any
K1,K2 P A

R(Y) Ď K1 Ď K2 or K2 Ď K1 Ď R(Y) ùñ E[LR(K1,Y)] ď E[LR(K2,Y)].

Figure: Illustration of R(Y) Ď K1 Ď K2.
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Remarks

We have identifiability results for Efficient Cash-Invariant Allocation
Rules (EARs). The corresponding identification functions are
functional-valued.

RESα(Y) = tk P Rn | ESα(Λ(Y + k)) ď 0u

is jointly elicitable with the functional-valued risk measure

Rn Q k ÞÑ VaRα(Λ(Y + k)) .
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Questions & Problems

Characterisation of the class of strictly consistent exhaustive loss
functions for R.

What are “nice choices” of π, leading to desirable properties
(translation invariance, homogeneity, …).
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Summary
The risk measures we consider

§ capture the dependence structure;
§ are sensitive with respect to capital allocations;
§ take an ex ante view specifying the capital allocations that prevent a

crises.

They are inherently set-valued functionals.
Two modes of elicitability allow for a rigorous treatment of set-valued
functionals such as quantiles or systemic risk measures.
Structural insight: Selective and exhaustive elicitability are mutually
exclusive.
First (interesting) case of strictly consistent loss functions taking sets
as arguments.
Possibility to do comparative backtests of Diebold-Mariano type.
M-estimation where one minimises over sets.
Regression with set-valued models.
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Further Reading

Main reference for this talk:
T. Fissler, J. Hlavinová, and B. Rudloff. Elicitability and identifiability of systemic
risk measures.
In preparation, 2018
Measures of Systemic Risk:
Z. Feinstein, B. Rudloff, and S. Weber. Measures of Systemic Risk.
SIAMJ. Financial Math., 8:672–708, 2017
Good introduction to elicitability:
T. Gneiting. Making and evaluating point forecasts.
Journal of the American Statistical Association, 106:746–762, 2011
Elicitability of vector-valued functionals and elicitability of (VaR, ES):
T. Fissler and J. F. Ziegel. Higher order elicitability and Osband’s principle.
Annals of Statistics, 44:1680–1707, 2016
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Thank you for your attention!
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